3.1.78 \(\int x (d+c d x)^2 (a+b \tanh ^{-1}(c x))^2 \, dx\) [78]

Optimal. Leaf size=280 \[ \frac {3 a b d^2 x}{2 c}+\frac {2 b^2 d^2 x}{3 c}+\frac {1}{12} b^2 d^2 x^2-\frac {2 b^2 d^2 \tanh ^{-1}(c x)}{3 c^2}+\frac {3 b^2 d^2 x \tanh ^{-1}(c x)}{2 c}+\frac {2}{3} b d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac {1}{6} b c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )-\frac {d^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{12 c^2}+\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2-\frac {4 b d^2 \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{3 c^2}+\frac {5 b^2 d^2 \log \left (1-c^2 x^2\right )}{6 c^2}-\frac {2 b^2 d^2 \text {PolyLog}\left (2,1-\frac {2}{1-c x}\right )}{3 c^2} \]

[Out]

3/2*a*b*d^2*x/c+2/3*b^2*d^2*x/c+1/12*b^2*d^2*x^2-2/3*b^2*d^2*arctanh(c*x)/c^2+3/2*b^2*d^2*x*arctanh(c*x)/c+2/3
*b*d^2*x^2*(a+b*arctanh(c*x))+1/6*b*c*d^2*x^3*(a+b*arctanh(c*x))-1/12*d^2*(a+b*arctanh(c*x))^2/c^2+1/2*d^2*x^2
*(a+b*arctanh(c*x))^2+2/3*c*d^2*x^3*(a+b*arctanh(c*x))^2+1/4*c^2*d^2*x^4*(a+b*arctanh(c*x))^2-4/3*b*d^2*(a+b*a
rctanh(c*x))*ln(2/(-c*x+1))/c^2+5/6*b^2*d^2*ln(-c^2*x^2+1)/c^2-2/3*b^2*d^2*polylog(2,1-2/(-c*x+1))/c^2

________________________________________________________________________________________

Rubi [A]
time = 0.47, antiderivative size = 280, normalized size of antiderivative = 1.00, number of steps used = 28, number of rules used = 14, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.700, Rules used = {6087, 6037, 6127, 6021, 266, 6095, 327, 212, 6131, 6055, 2449, 2352, 272, 45} \begin {gather*} \frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2-\frac {d^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{12 c^2}-\frac {4 b d^2 \log \left (\frac {2}{1-c x}\right ) \left (a+b \tanh ^{-1}(c x)\right )}{3 c^2}+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{6} b c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )+\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} b d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac {3 a b d^2 x}{2 c}-\frac {2 b^2 d^2 \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{3 c^2}+\frac {5 b^2 d^2 \log \left (1-c^2 x^2\right )}{6 c^2}-\frac {2 b^2 d^2 \tanh ^{-1}(c x)}{3 c^2}+\frac {2 b^2 d^2 x}{3 c}+\frac {3 b^2 d^2 x \tanh ^{-1}(c x)}{2 c}+\frac {1}{12} b^2 d^2 x^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(d + c*d*x)^2*(a + b*ArcTanh[c*x])^2,x]

[Out]

(3*a*b*d^2*x)/(2*c) + (2*b^2*d^2*x)/(3*c) + (b^2*d^2*x^2)/12 - (2*b^2*d^2*ArcTanh[c*x])/(3*c^2) + (3*b^2*d^2*x
*ArcTanh[c*x])/(2*c) + (2*b*d^2*x^2*(a + b*ArcTanh[c*x]))/3 + (b*c*d^2*x^3*(a + b*ArcTanh[c*x]))/6 - (d^2*(a +
 b*ArcTanh[c*x])^2)/(12*c^2) + (d^2*x^2*(a + b*ArcTanh[c*x])^2)/2 + (2*c*d^2*x^3*(a + b*ArcTanh[c*x])^2)/3 + (
c^2*d^2*x^4*(a + b*ArcTanh[c*x])^2)/4 - (4*b*d^2*(a + b*ArcTanh[c*x])*Log[2/(1 - c*x)])/(3*c^2) + (5*b^2*d^2*L
og[1 - c^2*x^2])/(6*c^2) - (2*b^2*d^2*PolyLog[2, 1 - 2/(1 - c*x)])/(3*c^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 6021

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6087

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6127

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[f^2
/e, Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[d*(f^2/e), Int[(f*x)^(m - 2)*((a + b*ArcTanh[c*x])
^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int x (d+c d x)^2 \left (a+b \tanh ^{-1}(c x)\right )^2 \, dx &=\int \left (d^2 x \left (a+b \tanh ^{-1}(c x)\right )^2+2 c d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+c^2 d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2\right ) \, dx\\ &=d^2 \int x \left (a+b \tanh ^{-1}(c x)\right )^2 \, dx+\left (2 c d^2\right ) \int x^2 \left (a+b \tanh ^{-1}(c x)\right )^2 \, dx+\left (c^2 d^2\right ) \int x^3 \left (a+b \tanh ^{-1}(c x)\right )^2 \, dx\\ &=\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2-\left (b c d^2\right ) \int \frac {x^2 \left (a+b \tanh ^{-1}(c x)\right )}{1-c^2 x^2} \, dx-\frac {1}{3} \left (4 b c^2 d^2\right ) \int \frac {x^3 \left (a+b \tanh ^{-1}(c x)\right )}{1-c^2 x^2} \, dx-\frac {1}{2} \left (b c^3 d^2\right ) \int \frac {x^4 \left (a+b \tanh ^{-1}(c x)\right )}{1-c^2 x^2} \, dx\\ &=\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{3} \left (4 b d^2\right ) \int x \left (a+b \tanh ^{-1}(c x)\right ) \, dx-\frac {1}{3} \left (4 b d^2\right ) \int \frac {x \left (a+b \tanh ^{-1}(c x)\right )}{1-c^2 x^2} \, dx+\frac {\left (b d^2\right ) \int \left (a+b \tanh ^{-1}(c x)\right ) \, dx}{c}-\frac {\left (b d^2\right ) \int \frac {a+b \tanh ^{-1}(c x)}{1-c^2 x^2} \, dx}{c}+\frac {1}{2} \left (b c d^2\right ) \int x^2 \left (a+b \tanh ^{-1}(c x)\right ) \, dx-\frac {1}{2} \left (b c d^2\right ) \int \frac {x^2 \left (a+b \tanh ^{-1}(c x)\right )}{1-c^2 x^2} \, dx\\ &=\frac {a b d^2 x}{c}+\frac {2}{3} b d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac {1}{6} b c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )+\frac {d^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{6 c^2}+\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {\left (b d^2\right ) \int \left (a+b \tanh ^{-1}(c x)\right ) \, dx}{2 c}-\frac {\left (b d^2\right ) \int \frac {a+b \tanh ^{-1}(c x)}{1-c^2 x^2} \, dx}{2 c}-\frac {\left (4 b d^2\right ) \int \frac {a+b \tanh ^{-1}(c x)}{1-c x} \, dx}{3 c}+\frac {\left (b^2 d^2\right ) \int \tanh ^{-1}(c x) \, dx}{c}-\frac {1}{3} \left (2 b^2 c d^2\right ) \int \frac {x^2}{1-c^2 x^2} \, dx-\frac {1}{6} \left (b^2 c^2 d^2\right ) \int \frac {x^3}{1-c^2 x^2} \, dx\\ &=\frac {3 a b d^2 x}{2 c}+\frac {2 b^2 d^2 x}{3 c}+\frac {b^2 d^2 x \tanh ^{-1}(c x)}{c}+\frac {2}{3} b d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac {1}{6} b c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )-\frac {d^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{12 c^2}+\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2-\frac {4 b d^2 \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{3 c^2}-\left (b^2 d^2\right ) \int \frac {x}{1-c^2 x^2} \, dx+\frac {\left (b^2 d^2\right ) \int \tanh ^{-1}(c x) \, dx}{2 c}-\frac {\left (2 b^2 d^2\right ) \int \frac {1}{1-c^2 x^2} \, dx}{3 c}+\frac {\left (4 b^2 d^2\right ) \int \frac {\log \left (\frac {2}{1-c x}\right )}{1-c^2 x^2} \, dx}{3 c}-\frac {1}{12} \left (b^2 c^2 d^2\right ) \text {Subst}\left (\int \frac {x}{1-c^2 x} \, dx,x,x^2\right )\\ &=\frac {3 a b d^2 x}{2 c}+\frac {2 b^2 d^2 x}{3 c}-\frac {2 b^2 d^2 \tanh ^{-1}(c x)}{3 c^2}+\frac {3 b^2 d^2 x \tanh ^{-1}(c x)}{2 c}+\frac {2}{3} b d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac {1}{6} b c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )-\frac {d^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{12 c^2}+\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2-\frac {4 b d^2 \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{3 c^2}+\frac {b^2 d^2 \log \left (1-c^2 x^2\right )}{2 c^2}-\frac {1}{2} \left (b^2 d^2\right ) \int \frac {x}{1-c^2 x^2} \, dx-\frac {\left (4 b^2 d^2\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-c x}\right )}{3 c^2}-\frac {1}{12} \left (b^2 c^2 d^2\right ) \text {Subst}\left (\int \left (-\frac {1}{c^2}-\frac {1}{c^2 \left (-1+c^2 x\right )}\right ) \, dx,x,x^2\right )\\ &=\frac {3 a b d^2 x}{2 c}+\frac {2 b^2 d^2 x}{3 c}+\frac {1}{12} b^2 d^2 x^2-\frac {2 b^2 d^2 \tanh ^{-1}(c x)}{3 c^2}+\frac {3 b^2 d^2 x \tanh ^{-1}(c x)}{2 c}+\frac {2}{3} b d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac {1}{6} b c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )-\frac {d^2 \left (a+b \tanh ^{-1}(c x)\right )^2}{12 c^2}+\frac {1}{2} d^2 x^2 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {2}{3} c d^2 x^3 \left (a+b \tanh ^{-1}(c x)\right )^2+\frac {1}{4} c^2 d^2 x^4 \left (a+b \tanh ^{-1}(c x)\right )^2-\frac {4 b d^2 \left (a+b \tanh ^{-1}(c x)\right ) \log \left (\frac {2}{1-c x}\right )}{3 c^2}+\frac {5 b^2 d^2 \log \left (1-c^2 x^2\right )}{6 c^2}-\frac {2 b^2 d^2 \text {Li}_2\left (1-\frac {2}{1-c x}\right )}{3 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.43, size = 263, normalized size = 0.94 \begin {gather*} \frac {d^2 \left (-b^2+18 a b c x+8 b^2 c x+6 a^2 c^2 x^2+8 a b c^2 x^2+b^2 c^2 x^2+8 a^2 c^3 x^3+2 a b c^3 x^3+3 a^2 c^4 x^4+b^2 \left (-17+6 c^2 x^2+8 c^3 x^3+3 c^4 x^4\right ) \tanh ^{-1}(c x)^2+2 b \tanh ^{-1}(c x) \left (a c^2 x^2 \left (6+8 c x+3 c^2 x^2\right )+b \left (-4+9 c x+4 c^2 x^2+c^3 x^3\right )-8 b \log \left (1+e^{-2 \tanh ^{-1}(c x)}\right )\right )+9 a b \log (1-c x)-9 a b \log (1+c x)+10 b^2 \log \left (1-c^2 x^2\right )+8 a b \log \left (-1+c^2 x^2\right )+8 b^2 \text {PolyLog}\left (2,-e^{-2 \tanh ^{-1}(c x)}\right )\right )}{12 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(d + c*d*x)^2*(a + b*ArcTanh[c*x])^2,x]

[Out]

(d^2*(-b^2 + 18*a*b*c*x + 8*b^2*c*x + 6*a^2*c^2*x^2 + 8*a*b*c^2*x^2 + b^2*c^2*x^2 + 8*a^2*c^3*x^3 + 2*a*b*c^3*
x^3 + 3*a^2*c^4*x^4 + b^2*(-17 + 6*c^2*x^2 + 8*c^3*x^3 + 3*c^4*x^4)*ArcTanh[c*x]^2 + 2*b*ArcTanh[c*x]*(a*c^2*x
^2*(6 + 8*c*x + 3*c^2*x^2) + b*(-4 + 9*c*x + 4*c^2*x^2 + c^3*x^3) - 8*b*Log[1 + E^(-2*ArcTanh[c*x])]) + 9*a*b*
Log[1 - c*x] - 9*a*b*Log[1 + c*x] + 10*b^2*Log[1 - c^2*x^2] + 8*a*b*Log[-1 + c^2*x^2] + 8*b^2*PolyLog[2, -E^(-
2*ArcTanh[c*x])]))/(12*c^2)

________________________________________________________________________________________

Maple [A]
time = 0.47, size = 458, normalized size = 1.64 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*d*x+d)^2*(a+b*arctanh(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/c^2*(d^2*a^2*(1/4*c^4*x^4+2/3*x^3*c^3+1/2*c^2*x^2)+1/48*b^2*ln(c*x+1)^2*d^2+4/3*d^2*a*b*arctanh(c*x)*c^3*x^3
+3/2*a*b*c*d^2*x+3/2*b^2*c*d^2*x*arctanh(c*x)+d^2*a*b*arctanh(c*x)*c^2*x^2+1/2*d^2*a*b*arctanh(c*x)*c^4*x^4+1/
2*d^2*b^2*arctanh(c*x)^2*c^2*x^2+17/48*b^2*ln(c*x-1)^2*d^2+17/12*d^2*b^2*arctanh(c*x)*ln(c*x-1)-1/12*d^2*b^2*a
rctanh(c*x)*ln(c*x+1)+1/12*d^2*b^2*c^2*x^2+2/3*d^2*b^2*c*x+17/12*a*b*ln(c*x-1)*d^2-1/12*a*b*ln(c*x+1)*d^2-17/2
4*b^2*ln(c*x-1)*ln(1/2*c*x+1/2)*d^2-1/24*b^2*ln(c*x+1)*ln(-1/2*c*x+1/2)*d^2+1/24*b^2*ln(-1/2*c*x+1/2)*ln(1/2*c
*x+1/2)*d^2+1/6*d^2*a*b*c^3*x^3+2/3*d^2*a*b*c^2*x^2+1/4*d^2*b^2*arctanh(c*x)^2*c^4*x^4+1/6*d^2*b^2*arctanh(c*x
)*c^3*x^3+2/3*d^2*b^2*arctanh(c*x)*c^2*x^2+2/3*d^2*b^2*arctanh(c*x)^2*c^3*x^3-2/3*d^2*b^2*dilog(1/2*c*x+1/2)+7
/6*d^2*b^2*ln(c*x-1)+1/2*d^2*b^2*ln(c*x+1))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 610 vs. \(2 (249) = 498\).
time = 0.48, size = 610, normalized size = 2.18 \begin {gather*} \frac {1}{4} \, a^{2} c^{2} d^{2} x^{4} + \frac {2}{3} \, a^{2} c d^{2} x^{3} + \frac {1}{2} \, b^{2} d^{2} x^{2} \operatorname {artanh}\left (c x\right )^{2} + \frac {1}{12} \, {\left (6 \, x^{4} \operatorname {artanh}\left (c x\right ) + c {\left (\frac {2 \, {\left (c^{2} x^{3} + 3 \, x\right )}}{c^{4}} - \frac {3 \, \log \left (c x + 1\right )}{c^{5}} + \frac {3 \, \log \left (c x - 1\right )}{c^{5}}\right )}\right )} a b c^{2} d^{2} + \frac {2}{3} \, {\left (2 \, x^{3} \operatorname {artanh}\left (c x\right ) + c {\left (\frac {x^{2}}{c^{2}} + \frac {\log \left (c^{2} x^{2} - 1\right )}{c^{4}}\right )}\right )} a b c d^{2} + \frac {1}{2} \, a^{2} d^{2} x^{2} + \frac {1}{2} \, {\left (2 \, x^{2} \operatorname {artanh}\left (c x\right ) + c {\left (\frac {2 \, x}{c^{2}} - \frac {\log \left (c x + 1\right )}{c^{3}} + \frac {\log \left (c x - 1\right )}{c^{3}}\right )}\right )} a b d^{2} + \frac {1}{8} \, {\left (4 \, c {\left (\frac {2 \, x}{c^{2}} - \frac {\log \left (c x + 1\right )}{c^{3}} + \frac {\log \left (c x - 1\right )}{c^{3}}\right )} \operatorname {artanh}\left (c x\right ) - \frac {2 \, {\left (\log \left (c x - 1\right ) - 2\right )} \log \left (c x + 1\right ) - \log \left (c x + 1\right )^{2} - \log \left (c x - 1\right )^{2} - 4 \, \log \left (c x - 1\right )}{c^{2}}\right )} b^{2} d^{2} + \frac {2 \, {\left (\log \left (c x + 1\right ) \log \left (-\frac {1}{2} \, c x + \frac {1}{2}\right ) + {\rm Li}_2\left (\frac {1}{2} \, c x + \frac {1}{2}\right )\right )} b^{2} d^{2}}{3 \, c^{2}} + \frac {2 \, b^{2} d^{2} \log \left (c x - 1\right )}{3 \, c^{2}} + \frac {4 \, b^{2} c^{2} d^{2} x^{2} + 32 \, b^{2} c d^{2} x + {\left (3 \, b^{2} c^{4} d^{2} x^{4} + 8 \, b^{2} c^{3} d^{2} x^{3} + 5 \, b^{2} d^{2}\right )} \log \left (c x + 1\right )^{2} + {\left (3 \, b^{2} c^{4} d^{2} x^{4} + 8 \, b^{2} c^{3} d^{2} x^{3} - 11 \, b^{2} d^{2}\right )} \log \left (-c x + 1\right )^{2} + 4 \, {\left (b^{2} c^{3} d^{2} x^{3} + 4 \, b^{2} c^{2} d^{2} x^{2} + 3 \, b^{2} c d^{2} x\right )} \log \left (c x + 1\right ) - 2 \, {\left (2 \, b^{2} c^{3} d^{2} x^{3} + 8 \, b^{2} c^{2} d^{2} x^{2} + 6 \, b^{2} c d^{2} x + {\left (3 \, b^{2} c^{4} d^{2} x^{4} + 8 \, b^{2} c^{3} d^{2} x^{3} + 5 \, b^{2} d^{2}\right )} \log \left (c x + 1\right )\right )} \log \left (-c x + 1\right )}{48 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*d*x+d)^2*(a+b*arctanh(c*x))^2,x, algorithm="maxima")

[Out]

1/4*a^2*c^2*d^2*x^4 + 2/3*a^2*c*d^2*x^3 + 1/2*b^2*d^2*x^2*arctanh(c*x)^2 + 1/12*(6*x^4*arctanh(c*x) + c*(2*(c^
2*x^3 + 3*x)/c^4 - 3*log(c*x + 1)/c^5 + 3*log(c*x - 1)/c^5))*a*b*c^2*d^2 + 2/3*(2*x^3*arctanh(c*x) + c*(x^2/c^
2 + log(c^2*x^2 - 1)/c^4))*a*b*c*d^2 + 1/2*a^2*d^2*x^2 + 1/2*(2*x^2*arctanh(c*x) + c*(2*x/c^2 - log(c*x + 1)/c
^3 + log(c*x - 1)/c^3))*a*b*d^2 + 1/8*(4*c*(2*x/c^2 - log(c*x + 1)/c^3 + log(c*x - 1)/c^3)*arctanh(c*x) - (2*(
log(c*x - 1) - 2)*log(c*x + 1) - log(c*x + 1)^2 - log(c*x - 1)^2 - 4*log(c*x - 1))/c^2)*b^2*d^2 + 2/3*(log(c*x
 + 1)*log(-1/2*c*x + 1/2) + dilog(1/2*c*x + 1/2))*b^2*d^2/c^2 + 2/3*b^2*d^2*log(c*x - 1)/c^2 + 1/48*(4*b^2*c^2
*d^2*x^2 + 32*b^2*c*d^2*x + (3*b^2*c^4*d^2*x^4 + 8*b^2*c^3*d^2*x^3 + 5*b^2*d^2)*log(c*x + 1)^2 + (3*b^2*c^4*d^
2*x^4 + 8*b^2*c^3*d^2*x^3 - 11*b^2*d^2)*log(-c*x + 1)^2 + 4*(b^2*c^3*d^2*x^3 + 4*b^2*c^2*d^2*x^2 + 3*b^2*c*d^2
*x)*log(c*x + 1) - 2*(2*b^2*c^3*d^2*x^3 + 8*b^2*c^2*d^2*x^2 + 6*b^2*c*d^2*x + (3*b^2*c^4*d^2*x^4 + 8*b^2*c^3*d
^2*x^3 + 5*b^2*d^2)*log(c*x + 1))*log(-c*x + 1))/c^2

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*d*x+d)^2*(a+b*arctanh(c*x))^2,x, algorithm="fricas")

[Out]

integral(a^2*c^2*d^2*x^3 + 2*a^2*c*d^2*x^2 + a^2*d^2*x + (b^2*c^2*d^2*x^3 + 2*b^2*c*d^2*x^2 + b^2*d^2*x)*arcta
nh(c*x)^2 + 2*(a*b*c^2*d^2*x^3 + 2*a*b*c*d^2*x^2 + a*b*d^2*x)*arctanh(c*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} d^{2} \left (\int a^{2} x\, dx + \int 2 a^{2} c x^{2}\, dx + \int a^{2} c^{2} x^{3}\, dx + \int b^{2} x \operatorname {atanh}^{2}{\left (c x \right )}\, dx + \int 2 a b x \operatorname {atanh}{\left (c x \right )}\, dx + \int 2 b^{2} c x^{2} \operatorname {atanh}^{2}{\left (c x \right )}\, dx + \int b^{2} c^{2} x^{3} \operatorname {atanh}^{2}{\left (c x \right )}\, dx + \int 4 a b c x^{2} \operatorname {atanh}{\left (c x \right )}\, dx + \int 2 a b c^{2} x^{3} \operatorname {atanh}{\left (c x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*d*x+d)**2*(a+b*atanh(c*x))**2,x)

[Out]

d**2*(Integral(a**2*x, x) + Integral(2*a**2*c*x**2, x) + Integral(a**2*c**2*x**3, x) + Integral(b**2*x*atanh(c
*x)**2, x) + Integral(2*a*b*x*atanh(c*x), x) + Integral(2*b**2*c*x**2*atanh(c*x)**2, x) + Integral(b**2*c**2*x
**3*atanh(c*x)**2, x) + Integral(4*a*b*c*x**2*atanh(c*x), x) + Integral(2*a*b*c**2*x**3*atanh(c*x), x))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 761 vs. \(2 (249) = 498\).
time = 1.59, size = 761, normalized size = 2.72 \begin {gather*} \frac {2}{45} \, {\left (\frac {30 \, {\left (c x + 1\right )}^{3} b^{2} d^{2} \log \left (-\frac {c x + 1}{c x - 1}\right )^{2}}{{\left (\frac {{\left (c x + 1\right )}^{6} c^{5}}{{\left (c x - 1\right )}^{6}} - \frac {6 \, {\left (c x + 1\right )}^{5} c^{5}}{{\left (c x - 1\right )}^{5}} + \frac {15 \, {\left (c x + 1\right )}^{4} c^{5}}{{\left (c x - 1\right )}^{4}} - \frac {20 \, {\left (c x + 1\right )}^{3} c^{5}}{{\left (c x - 1\right )}^{3}} + \frac {15 \, {\left (c x + 1\right )}^{2} c^{5}}{{\left (c x - 1\right )}^{2}} - \frac {6 \, {\left (c x + 1\right )} c^{5}}{c x - 1} + c^{5}\right )} {\left (c x - 1\right )}^{3}} + \frac {2 \, {\left (\frac {60 \, {\left (c x + 1\right )}^{3} a b d^{2}}{{\left (c x - 1\right )}^{3}} + \frac {10 \, {\left (c x + 1\right )}^{3} b^{2} d^{2}}{{\left (c x - 1\right )}^{3}} - \frac {15 \, {\left (c x + 1\right )}^{2} b^{2} d^{2}}{{\left (c x - 1\right )}^{2}} + \frac {6 \, {\left (c x + 1\right )} b^{2} d^{2}}{c x - 1} - b^{2} d^{2}\right )} \log \left (-\frac {c x + 1}{c x - 1}\right )}{\frac {{\left (c x + 1\right )}^{6} c^{5}}{{\left (c x - 1\right )}^{6}} - \frac {6 \, {\left (c x + 1\right )}^{5} c^{5}}{{\left (c x - 1\right )}^{5}} + \frac {15 \, {\left (c x + 1\right )}^{4} c^{5}}{{\left (c x - 1\right )}^{4}} - \frac {20 \, {\left (c x + 1\right )}^{3} c^{5}}{{\left (c x - 1\right )}^{3}} + \frac {15 \, {\left (c x + 1\right )}^{2} c^{5}}{{\left (c x - 1\right )}^{2}} - \frac {6 \, {\left (c x + 1\right )} c^{5}}{c x - 1} + c^{5}} + \frac {\frac {120 \, {\left (c x + 1\right )}^{3} a^{2} d^{2}}{{\left (c x - 1\right )}^{3}} + \frac {40 \, {\left (c x + 1\right )}^{3} a b d^{2}}{{\left (c x - 1\right )}^{3}} - \frac {60 \, {\left (c x + 1\right )}^{2} a b d^{2}}{{\left (c x - 1\right )}^{2}} + \frac {24 \, {\left (c x + 1\right )} a b d^{2}}{c x - 1} - 4 \, a b d^{2} - \frac {2 \, {\left (c x + 1\right )}^{5} b^{2} d^{2}}{{\left (c x - 1\right )}^{5}} + \frac {11 \, {\left (c x + 1\right )}^{4} b^{2} d^{2}}{{\left (c x - 1\right )}^{4}} - \frac {18 \, {\left (c x + 1\right )}^{3} b^{2} d^{2}}{{\left (c x - 1\right )}^{3}} + \frac {11 \, {\left (c x + 1\right )}^{2} b^{2} d^{2}}{{\left (c x - 1\right )}^{2}} - \frac {2 \, {\left (c x + 1\right )} b^{2} d^{2}}{c x - 1}}{\frac {{\left (c x + 1\right )}^{6} c^{5}}{{\left (c x - 1\right )}^{6}} - \frac {6 \, {\left (c x + 1\right )}^{5} c^{5}}{{\left (c x - 1\right )}^{5}} + \frac {15 \, {\left (c x + 1\right )}^{4} c^{5}}{{\left (c x - 1\right )}^{4}} - \frac {20 \, {\left (c x + 1\right )}^{3} c^{5}}{{\left (c x - 1\right )}^{3}} + \frac {15 \, {\left (c x + 1\right )}^{2} c^{5}}{{\left (c x - 1\right )}^{2}} - \frac {6 \, {\left (c x + 1\right )} c^{5}}{c x - 1} + c^{5}} - \frac {2 \, b^{2} d^{2} \log \left (-\frac {c x + 1}{c x - 1} + 1\right )}{c^{5}} + \frac {2 \, b^{2} d^{2} \log \left (-\frac {c x + 1}{c x - 1}\right )}{c^{5}}\right )} c^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*d*x+d)^2*(a+b*arctanh(c*x))^2,x, algorithm="giac")

[Out]

2/45*(30*(c*x + 1)^3*b^2*d^2*log(-(c*x + 1)/(c*x - 1))^2/(((c*x + 1)^6*c^5/(c*x - 1)^6 - 6*(c*x + 1)^5*c^5/(c*
x - 1)^5 + 15*(c*x + 1)^4*c^5/(c*x - 1)^4 - 20*(c*x + 1)^3*c^5/(c*x - 1)^3 + 15*(c*x + 1)^2*c^5/(c*x - 1)^2 -
6*(c*x + 1)*c^5/(c*x - 1) + c^5)*(c*x - 1)^3) + 2*(60*(c*x + 1)^3*a*b*d^2/(c*x - 1)^3 + 10*(c*x + 1)^3*b^2*d^2
/(c*x - 1)^3 - 15*(c*x + 1)^2*b^2*d^2/(c*x - 1)^2 + 6*(c*x + 1)*b^2*d^2/(c*x - 1) - b^2*d^2)*log(-(c*x + 1)/(c
*x - 1))/((c*x + 1)^6*c^5/(c*x - 1)^6 - 6*(c*x + 1)^5*c^5/(c*x - 1)^5 + 15*(c*x + 1)^4*c^5/(c*x - 1)^4 - 20*(c
*x + 1)^3*c^5/(c*x - 1)^3 + 15*(c*x + 1)^2*c^5/(c*x - 1)^2 - 6*(c*x + 1)*c^5/(c*x - 1) + c^5) + (120*(c*x + 1)
^3*a^2*d^2/(c*x - 1)^3 + 40*(c*x + 1)^3*a*b*d^2/(c*x - 1)^3 - 60*(c*x + 1)^2*a*b*d^2/(c*x - 1)^2 + 24*(c*x + 1
)*a*b*d^2/(c*x - 1) - 4*a*b*d^2 - 2*(c*x + 1)^5*b^2*d^2/(c*x - 1)^5 + 11*(c*x + 1)^4*b^2*d^2/(c*x - 1)^4 - 18*
(c*x + 1)^3*b^2*d^2/(c*x - 1)^3 + 11*(c*x + 1)^2*b^2*d^2/(c*x - 1)^2 - 2*(c*x + 1)*b^2*d^2/(c*x - 1))/((c*x +
1)^6*c^5/(c*x - 1)^6 - 6*(c*x + 1)^5*c^5/(c*x - 1)^5 + 15*(c*x + 1)^4*c^5/(c*x - 1)^4 - 20*(c*x + 1)^3*c^5/(c*
x - 1)^3 + 15*(c*x + 1)^2*c^5/(c*x - 1)^2 - 6*(c*x + 1)*c^5/(c*x - 1) + c^5) - 2*b^2*d^2*log(-(c*x + 1)/(c*x -
 1) + 1)/c^5 + 2*b^2*d^2*log(-(c*x + 1)/(c*x - 1))/c^5)*c^2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x\,{\left (a+b\,\mathrm {atanh}\left (c\,x\right )\right )}^2\,{\left (d+c\,d\,x\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*atanh(c*x))^2*(d + c*d*x)^2,x)

[Out]

int(x*(a + b*atanh(c*x))^2*(d + c*d*x)^2, x)

________________________________________________________________________________________